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Statement of the Problem Studied 
Chemical reactions are commonly accelerated by external energy sources such 
as heat, light, or electric potential. Mechanical force, by comparison, is almost 
entirely untapped as a reaction input, despite its ability to induce reactions that 
are effectively impossible to obtain by conventional methods. It has long been 
established, for example, that physically snapping a piece of poly(ethylene) 
plastic involves homolytic carbon-carbon bond scission––a chemical reaction 
whose activation energy of ca. 90 kcal mol-1 makes it more difficult than almost 
any potentially useful chemical transformation.1-13 More recently, Hickenboth and 
co-workers reported that mechanical force induces an intramolecular 
rearrangement to give the product that would result from a symmetry-forbidden 
electrocyclic ring opening.14 
While the spectacular potential of mechanically driven reactivity has been 
demonstrated in stoichiometric reactivity, mechanical force-induced catalysis 
(“mechanocatalysis”) has yet to be demonstrated. If shown to be viable, 
mechanocatalysis would create a new avenue by which to approach chemical 
transformations—the manipulation of catalyst stress state—an avenue that 
complements traditional routes of optimizing catalyst structure or loading, 
temperature, pressure, solvent, etc…   
The promise of mechanocatalysis comes from a powerful combination of 
attributes: the magnitude of macroscopic forces relative to interatomic and 
intermolecular forces, and the potential to apply mechanical energy specifically 
and directionally to the bonds of interest. Thus, the potential to influence not only 
the rates of reactions, but the selectivity for specific reaction outcomes, is 
fundamentally different from that which exists as a function of temperature. To be 
useful in practical chemical synthesis, the power of mechanically driven reactivity 
needs to be expanded beyond a single reaction within a high molecular weight 
polymer and into the realm of catalysis.  
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We pursued here the first synthetic, mechanically responsive catalyst. Since this 
work began, Sijbesma15 has reported the mechanical activation of latent 
catalysts, but the reactions enabled by those catalysts, once activated, were 
identical to those of the same pre-catalysts activated by other means. Our goal 
was (and remains) to not activate, but modulate, the activity of a 
mechanocatalyst. Our Specific Aims were: 
Specific Aim 1.  Synthesize elastomeric organogels and bulk rubbers with 
embedded, stress-bearing catalytic sites. 
Specific Aim 2.  Demonstrate catalytic competence of stress-bearing catalytic 
sites. 
Specific Aim 3.   Maximize the stress-dependence of the selectivity in 
catalytic reactions. Our goal for this initial project phase is to demonstrate a 
mechanical bias that results in a measurable change in n:i selectivity.  
 
Summary of Important Results 
We successfully completed Aims 1 and 2. We adapted our original research plan 
away from bis(phosphine) ligands, because their synthesis and isolation was 
found to be incompatible with a short-term discovery project. Instead, we 
developed a robust set of Rh catalysts based on bis(N-heterocycliccarbene) 
(NHC) ligands. These catalysts are shown in Figure 2. We synthesized swollen 
elastomeric organogels in which these catalysts serve as stress-bearing cross-
links, and demonstrated their unperturbed activity in the swollen gels. 

 
Figure 1. Schematic representation of biasing reaction selectivity via 
mechanocatalysis. A catalyst, “mcat”, is embedded in an elastomeric support. 
Deformation of the elastomeric support transfers mechanical stress to mcat. Under 
stress-free conditions, mcat catalyzes the transformation of reactant A into a mixture 
of major product B and minor product C. Deformation of the mechanocatalyst 
preferentially populates an extended conformation of the catalyst, and switches the 
reaction selectivity toward C as the major product. 
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We have also successfully strained the gels in two ways: (1) application of a 
external compressive force (squashing between parallel plates), and (2) swelling 
by solvent. In both cases, we have yet to demonstrate a statistically significant 
change in activity with applied strain. Our hypothesis is that the critical limiting 
factor is that of heterogeneity within the support – while some of the catalysts are 
strained to the point that their activity is modulated, these are only a small 
fraction of the total catalyst population, and so the effect on the observable net 
activity is negligible. 

Figure 2. A (bis-NHC)Rh complex A (left) and its incorporation into a polyacrylate gel. 
The Rh complex is catalytically active within the gel, where it also acts as a stress-
bearing cross-link. 

 
In ongoing work, we are now partnering with collaborators at Carnegie Mellon 
and UNC to introduce molecular stress uniformly by isolating catalytic sites along 
the backbone of internally strained, sterically congested macromolecules such as 
polymer bottlebrushes.16 The internal force can be tuned directly through the 
molecular weight of the bottlebrush architecture, up to forces at which homolytica 
carbon-carbon bond scission occurs, and will provide an unambiguous test of our 
ultimate hypothesis. 
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